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ABSTRACT

The simplified statistical theory developed earlier by the present author
is made self-containing for the wall shear flows. ADuring the course of the
formulation, the comparison of the present theory, developed from the generalized
Brownian motion, with the stochastic theory based on the Navier-Stokes equation,
was made. The mutual consistency of the two theories wasnshown, Analyvsis of
the resulting equations shows that the flow field naturally divides itself into the
three layérs of the outer, transition,wand the inner layers. The contribution of
" the small eddies through viscosity to all observable properties is negligible in
the outer layer, whereas its contribution to the mean shear is of first oxder in
the transition layer. In the inner layer, ali vidcosity effects are of first
order. The compariscn of the poﬁette flow sclutions obtained with the available
experimental results shows thaﬁ the present thecry describes the rather detailed

turbulence structure of the flow field satisfactorily in addition to correctly

predicting the mean velocity profile and the surface shear.



I. INTRODUCTION

Most of the real turbulent shear flows defy analysis by the classical
staétical turbulence theories because of the extreme complexity of the theories.
8tudies of these flows, therefore, have exclugively depended on the phenomeno-
logical theories such as the Prandtl's mixing-length theory. (See for instance,
References 1 ~ 6,) Many of the important aspects of the flow, however, such as
the ﬁurbulence gstructure of the flow field and the chemical reaction, cannot
be described correctly by these phenomenological theories., |
A simplified statistical theory was developed by the presenttauthar(?ﬁg}
which contained those stochastic properties of the high Reynolds number turbu-
lence field which are critigal‘in determining the salient turbulgnce and transg-
po?t characteristics of th; shear flow fields. It has been demonstrata&(S‘QE
that this theory can indeed bg enployed to despri?e tractably ﬁhe various pro-
perties of a shear flow field, sqch as the tﬁrbuleﬁce and chemical structures
of a turbulent diffusion flame, which has not been possible befére.

(7-9)

The previous applications of the simplified statistical theory were

limited to the shear flow fields with no solid boundaries. The theory was first
{7}

“

applied to the Couette flow at one Reyrnolds number as the initial test of

»the ‘theory. However, the experimentally determined dissipation function of a

pip; flow available at that‘Reynalds number had to be employed. Also, several

assumptions héﬁ to be madeAin order to apply the theory all the way to the wall.
In this paper, the structure of a flow field as affected by a solid boundary

will be described by the simplified statistical theory with the same rigor as

(8,9) with no solid boundaries. For

that previously applied to the flow fields
this purpose, the plane Couette flow ig chosen because of its simple flow configu~

ration. The fluid is considered to be incompressible and chemically inert.



It will be shown that, when the Reynolds mumber is sufficiently large, the
flow f£ield naturally divides itself into three lavers: the cutexr laver, intexr-
mediate {transiticn) layer, and the inner layer. Solution of the governing
equations leading to such division will be carried out by the method of matched
asymptotic expansions,

The subdi%ision of the flow field into such three layers, and even the
description of the field by the matched asymptotic expansions, are not new in
themselves. (See for instance, Reference 10.) In the previous works, however,
these subdivisions were the results of the analysis of the pheﬁomenolmgicaily
constructed equations with the emperical functions and parameters a priori
supplied from the known experimental rgsults. Therefore, the analysis essen-
tially returned what one put in a priori emperically. Furthermore, the division
and the asymptotic matching were all baéed on the mean velocity profile only.

In contrast, the present’theory is self—qantained. Hence, it is the natural
gcaling of the governing equations, that control éhe behavior of the Reynolds
stress, turbulence energy, etc., as well as the mean velocity, which results in
~ the division into such layers.

From the present analysis, the mean velocity, turbulence energy, and the
Reynolds stress profiles as well as the surface ;hear gtress will be determined
as functions of the flow Reynolds number. These results will be compared with

thévavailable experimental data of Reichardt(4) (5.6)

and Robertson, 'et.al.
A detailed description of the turbulent Couette flow, and that of the
general near-surface turbulence structure of shear flows, will be given in

terms of the present theory.



IT. GOVERNING FOKKER~PLANCK EQUATION

The detailed development of the present simplified statistical theory is

given in the previous papers,(/‘g)

and it will not be repeated here. It is
only pointed out here that the theory resulted in a set of modified Fokker-
Planck equatioﬁs governing the distribution functions of the fluid elements
and the chemical species. These eguations have been made self~contaiming{$”9}
for the flow fields with no solid boundaries.

In ?he present section, the Fokker~Planck equation gpverning the distri-
bution function of the fluid elements will be made self-containing for the shear
flows with solid boundaries.

In the next section, a set of moment equations will be derived from the
Fokker-Planck equation in order to sclve this equation by the moment method

due to Liu and Lees(ll) (7-9)

as it was done in the earlier problems. The sclu~
tion of the moment equations for Couette flow and the discussion of the results

will then follow.

General Porm

»

The Fokker-Planck equation which governs the distribution function of the

fluid elements, f(t,z,g), was formulated(7‘8) as,
< u > .2
of 3f 3 3 Kk 3°f
3t + uj axj + 3113 (ij) = 8 auj [f (uj uoj) ] + 3 v B’Qj

(1)

T T
The distribution function is defined such that £(t,x,u)du denotes the probability

s . ‘ 4 0y 1 _)‘ »
of finding a fluid element in the phase cell du about the instantanecus absolute



. .a" I3 * » —) 0 » +
velocity u, at time t and position x. The cartesian tensor nctation is emploved
in Eg. (1). The symbol uoj represents the average velocity whereas Uj is the

instantaneous velocity relative to uoj' Hence, U%'z uj - uoj' The symbol < >
»t

denotes the ensemble average. Thus, for instance,
' >
YU > = J/}'U U du
K K KK

u_, z.}rf u, dﬁ
o] J

The quantity B represents the characteristic relaxation rate of the non~

(2}

]

<y, >
3

equilibrium degree of freedom representing the larger energy-containing eddies.®
Kj represents the effects on the fluid elements of the molecular viscosity and
the applied mean pressure gradient.* These two guantities, £ and Kj’ must bhe

properly defined in order to render Eg. (1) selffcontaining.

The characteristic relaxation rate, 8, is given<7'8) as,
<UKUK>1/2 L auo
B = e ] 4 e e {3}
2} U e Y

¥

for the two-dimenéional flows whereinvthe pfedominant mean velocity gradient is
auo/ay. The quantities u and y are the mean velocity in the streamwise direction
ané the orxrdinate normal to'the streamwise direction, respectively. L and A are
the characteristic lengths respectively of the flow field and the system producing
the eddies. In a pure shear-produced turbulence, X = L when L is taken as the

shear layer thickness. The subscript =« denotes the reference condition.

*See References 7 and 8.



The expression for Kj will now be discussed for the flows wherein the mean

presgure gradient is negligible.

Wall Effect

(7-9) (12,13}

The present turbulence model is built upon the known phenomenon
of the statistical separation which exists between the nonequilibrium, energy-
containing, larger eddies and the smaller, egquilibrium eddies when the turbulence
Reynolds number is sufficiently large. All observable properties of a turbulence
field and also the dissipation rate are detgrmined by the' behavior of these
larger eddies. The lower wave number region of the spectrum signifying the
energy-containing eddies is represented by one nonequilibrium degree of freedom
~whose characteristic relaxation rate is given by Eq. (3).

When there is no solid boundary, this nonequilibrium degree of freedom is
sufficient to determine both the observable properties and the dissipation rate.

(8)

Hence, it was formulated for the free turbulence

7
i

-8B (u, ~u ) (4)
3

with

where Bv is the characteristic dissipation rate.
As a solid boundary is approached in a flow, the characteristic length of
the nonequilibrium degree of freedom is expected to decrease, and this decrease

is manifested by the usual increasing of the mean velocity gradient near the wall.



This effect of the decreasing characteristic length on the characteristic re-
laxation rate of the ncnequilibrium degree of freedom is already included in
BEgs. (3) through the mean velocity gradient.

There is, however, another influence of the solid boundary. 2as the solid
boundary is approached, the energy-containing region of the spectrum broadens:
thus, the inertial subrange moves toward the higher wave number region. This

, . . , - . 133
ig clearly seen, for instance, in the figures 4.4 and 4.5 of H1nze(

show the energyﬁspectra of the pipe and boundary layer flows obtained by Lau-
fer(l4) and Klebanoff, et.al.(ls)

As it was mentioned earlier, the dissipation rate is controlled by the
energy-containing eddies when the turbulence Reynolds number is sufficiently
large. More strictly speaking, however, it is controlled by the reglon adjacent

[
' e (12,13)
to the low wave number end of the inertial subrange

which corresponds
to the high wave-number end of the energy containing region. This upper end
of the energy-containing region moves into the higher wave number much faster
than does the nonequilibrium degree of freedom representing the energy-contain-
ing region as a whole, as the wall is approached. That is, the eddies control-

= 7
(R~ s

ling the dissipation rdte are more directly affected by the solid boundarv as
compared to the enerqy»contaiﬁing eddies as a wh;lea Kj’ therefore, must reflect
this direct effect of the solid boundary on the dissipation with the approaching
of the boundanvy.

&lso, the increasing role of the small, eguilibrium (near-equilibrium}
. q ‘

eddies on the observable properties must be manifested in Kj. Since these

ot

eddies are small in size and in neav-equilibrium, their contributions to the
observable properties should be in local in character. This means that their

contributions should be functions of the local properties, and not functic

the two-peint correlations, eto., which are the properties of the larger eddies



expressed in

ot

o

0
e}

sresent theory by the characteristic relaxation rate B.

In view of the above discussion, the K. is expressed for the wall-turbu-
i :

lence as,
K, = -8 (u, -u .} = K. (6)
J o]

with, for the Couette flow,

2
<y U >1/“ Ju
Ry KoK L o] L s
B = LT 1+ 5 = {73
uow v /e v o+ oy .

In eg. (6), the first term represents the effect of molecular viscosity on the
dissipation whereas the second term, K:, that on the observable properties.
3

In Eg. (7) defining the characteristic dissipation rate, the characteris-
tic size of the eddies responsible for the energy input to the inertial subrange’
is considered to be of the order of the distance ffom the wall. However, as
¥ *+ o, the size of these eddies should not beccme zero on physical grounds. In
the flow region near a wall, the minimum size, y¥, of the eddies which can be
considered as being at the low wave number end of an inertial subrange must be
of the order of the thickness of the layer withinnwhich the viscosity effect on
the observable properties is of first order.

As it will be seen in a subsequent section, the viscosity effect first
manifests itself on the mean shear as the wall is approached. This layver will
be called the "transition layer". The minimum size of the eddies, y*, is,
therefore, of the order of the transition layer. This quantity will be defined
more precisely in Section IV.

Tt is clear that the transition layer thickness and, therefore, y* will be

functions of the flow Reynolds number. Furthermore, v*/L<<l for the large flow
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Reynolds numbers of the present interest. Therefbre, Bv defined by Eqg. {(7)
becomes equal to the B defined by Eg. (3) as v -~ L. That is, in the ocutermost
region of a turbulent shear layer where the influence of the wall is negligible,

the dissipation rate is controlled by the same nonequilibrium degree of freedom
8.9

which controls the observable properties, consistent with the previous analysis

of the free turbulence.
Y . .
Kj will now be considered.

; . . ‘ . . ' {16
Viscosity Effect on Observable Properties, and Comparison with the Lundgren's )

(17)

and Fox's Theories

Az it was mentioned earlier, the influence of the smaller eddies on the
distribution function, £, cannot be neglected near the wall.

The Reynolds number based on the mean fluctuation velocity and the scale
of these eddies is very small. Hence, the statistical behavior of these eddies
and their effect on £ cannot be determined by the present generalized Brownian
stochastics,(7’8) |

Also, the small Reynolds number of these eddies means that their contribu-
tion to the distribution function and to the observable properties is dependent
upon the molecular viscosity.

The effect of these small eddies on £, that is, the expression for K will

b

be obtained from the Navier-Stokes equation following the stochastic analvses

&) (17)

L . 1 . . .
of that eguation given by Lundgren( and Fox. By comparing the present

Fokker-Planck equation to the eguations derived from the Navier-Stokes squation,
: ; {1&)
the congistency of the present theory with that developed by ILundgren and

(17}
Fox can also be seen.



In the works of Lundgren and Fox, it is first considered that there exi

. . . , . . (n) - e
an n-point distribution function of fluid elements, f (t,xl,x?, ~~~~~~ xqng;v
L - e
"‘3" - . 3 -
~~~~~ vr), where n may be as large as it is necessary to describe a turbulence
1

> e
field. Then the detailed ensemble average of any function G[vl(xlt),v?(ngﬁ}y«—~

v (+ )] i i b
———y (% v
L& )] is given by,

(n) 3 - -
3 e o e e o (8
G dv dv2 dw Lo )

0]

- [

The bar on a function is employed to represent the particular ensemble averaging

defined by Eg. (8).

£ o
. - . . . . . PR 0 ]
The lower hierarchy distribution function is then defined in terms of x‘l}

and the Dirac delta function as,

- > > _ A _
PRy = f(tpxlldl) 5LV1(2§lrt) ulj 7

A2 O e . —
£ (t,xl,xz,ulpuz) = SLvl(x

Lt
-
R

~p e - .
1rt) - ul] Sﬂvz(xg,t} - u,

aeto.
"

-+ I3
e ) defined above is the same &

The one-point distribution £{t,x.
L

).

i

.
3%

L

Wy
o

resent distribution function f{t,x,t
g 12

From Eg. 9),

> . .
o e §{y_ - u_} (10}

Now, by obtaining the esxpression for in terms of space derivatives from

Bt
the Navier-Stokes equation, and by substituting this expression into Eg. (10)

(18)

Lundgren derived the following equation for f:
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@j; 1 —§£—~ La_..__. - _1_-_____ J 1 f . 9 2 f(« %
at &JSX- du., 47 x> > K 1o Bx % cu&}%
1 Kojx - x2! 2m iy
82v,
+ v - 5($ - E) = 0 (11)
2% 9x  Bu. 1
KK

where v is the kinematic viscosity.
In the present theory, the distribution function when the mean pressure gra-
dient is negligible is governed by the Pokker-Planck equation, Eg. (1}, which

becomes with Kj defined by Eg. (6},

< >
af L Bt R I Y% o3
3t 3 9x, gu, T 7] Yoy’ 3 du,3u,
J 7 13
v 3 - 2 v .
B == [f(u, - u_ )] — (fK,} = O (12)
Buj j 3 Euj 3

A comparison of the Lundgren’s eguation, BEg. (11), with the present equa-
tion, Eq. (12), shows that the evolution toward the isotropy* is governed by the
third term of sach equation.

The influence of the molecular viscosity on £ is given by the last term of
Bg. (11) which must be equal to the last twé ter&s of Eq. {12y. In the initial
development of the present theory given in reference 7, the entire viscosity

effect, Kjf wasg expressed as,

K, = v o—i— 13

When Eg. (13) is employed, the last two terms of Eg. (12) simply becomes,

*Relaxation of the nonequilibrium degree of freedom toward eguilibrium.



2
: . 3 u,
- e -
T (K.} = v T & r*w%"~
su i gy, dw O0x
3 1 KooK 4

ne last term of Eg. (11} can be also written, with the use of Egs. (8)

N 7 32
; :
o X, 3 N - P d‘} 5
L e S— 6(\7 - u) o N e = - B S— §i5§
axréx du du, o0x 9%
S 3 b

(16)

Therefore, the effect of viscosity on f expressed by Lundgren

(7)

is identical

to that initially developed in the present theory.

. 2 . . o .
xpression, £(3 u.,/9x 9x ), however, depends on the two-point distri-
P 3 K K p

2 &) 17
(2) ) and Fox.' =’

The

D

. . - : (1
bution function £ as well as on £, as was chown by Lundgren
As it was discussed earlier, the dissipation rate in the high Reynolds-~nurber

turbulence is controlled by the larger energy-containing eddies.

it

sortion of f(@zuj/BXKBXK} pertaining to dissipation must depend on the two-
point distribution function. On the other hand, as it was explained in the
paragraphs preceding Eqg. (6}, ﬁhe contribution of the small, near-eguilibrium
eddies on the observab;e properties, such as £, must be local in character.
Thus, it must depend only on the cne-point distribution function f.

In the work of reference 7, the dissipation portion of f(azuj/axKéxK} which
depends on the’£w0wpoint distribution function was supplied frqm the available
experimental data. In the subsequent analyses of referencés 8 and 9, the dissi-~
pation was expﬁessed in terms of the evolution rate of the larger eddies as
Bgs. (4) and (5). The contribution of the swall eddies on £ through vi&cc@iﬁy
is negligible when there is no solid boundary. Therefore, the Fokker-Planck

equation was made self-containing with Egs. (3} through (5) for free turbulence.

2 L . . . N
That portion of £{5 u,/BxKBXK) pertaining to the contribution of the small
1 <

fo N

o
o
s
ad
e
B
o

to £ is now determined by egquating the last two terms of Eg. (12) to the
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last term of BEg. (11). Before these terms are equated, however, the last term
of Bg. (11) is manipulated into a more convenient form as follows.

By expressing the Dirac delta function as the limit of a Gaussian function,

FOX(L/) obtained,
v i—vlm—-i~— 6(3 - 1) lim A - Cz §i-~— ?zﬂ.ii,
3% 8 h 5 I 3 - 2 z
XK X 9 0 v3/223 i 2 BXKBKK SxK BxK
. 2(vm - um)(vn - un) va Svn o - )2/ 5 e
3 3% 3% P A
z KoK i .

The above expression is manipulated into a form somewhat different from that

obtained by Fox as,

>
e 2
v-m;il__._ﬁm (v - Q) = N 5%f _ Wom Mo 3%
dx 9%  du, v dx Ix ax o% Su du
K K K 1% «© m n
5 B : Y 7 v
. 82 dem oVn . 'avm Von . B&m 3 n 5(3 ) 3) -
' du Ju 2% S 9% ox 9% 8x )
mon K 'S K K K 'S

Equation {17) brings out clearly the two aspects of the viscous effect.
The first quantity on the right-hand side of Eg. (17) depends on the one-point
diséribution function only, and it is the contribution of the small eddies to
the observablgvpropertiesu The second qﬁantity, on the other gand, depends on
the two-point distribution function, and it is the dissipation term which depends
on the larger eddies.

New, equating the last two terms of Eg. (12) to the right-hand side of

BEg. (17), it is seen that the first of the last two terms of Eg. (12} is eqg

sl

o

to the last term of Rg. (17), and,
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9 o2 du du 2.

d (exY) = {a £ _ om on 9°f (13)

du, 3 xBx ax ox 2% du du -
J Y K K Wy

self-Contained Fokker-Planck Equation

Equation (12) governing £ is now self-contained with the use of Bg. (18).
This eguation is transformed into the following by considering f to be a func-

. . -3 . i
tion of the relative velocity U instead of the absolute wvelocity u.

. Ju N Ju
of oK of of af om
T e el Sy y gk - T
3t 3t U (UK F uQK) ox (UK * uOK) U ax
K K m K
9 U a2f ‘ v 2
- B -~ (fU + SIS s - — (£
3o (U 3 au 8 5o U
K m m K
2
2 5 c
oo e, e 3¢ 7 Mo e - 0 (19)
ox ox dx 3% 92U ox 9% AU
K Kk e mooK mm K

The quantities B and Bv are given by Egs. (3) and (7), respectively.

Solution of Eg.

tute the remainder of this papér.

1. (18) for Couette flow and discussion of the results consti-



IXI. GOVERNING MCMENT EQUATIONS

The solution of Eg. (19 will be obtained by the moment method due to

(b (7-9) For this purpose, we first

Liu and Lees as in the previous papers.
obtain the generalized moment equation for steady state by multiplying Eqg.

{19) by a function Q(g), and integrating it with respect to the velocity space,

: Ju ¢
] - om 3L . A
. | f(UK + uOK)QdU o5y ’ £ oY (LK + uoK) qu
K K m .
- WU > ¢
3 > K K af 39 -
+ B j fUK U d4u  + 3 3 30 du
L K / m o om
2 du
v 3 > 3 > oK 3 20
fu L - e 2 S au
+ 8 J £, 35 v [Sx i I £QAU + 2 7% f e
© KK m m K
32u E
- POl N N : 303
5% 9% } F oo du} 0 (207

The particular moment equations governing the Couette flow is now derived

from Eg. (20) by first expressing

f = fi + f2 : . (21)
where
1 3 (u - uol)2 + v2 + wz
£ o= - - for V20,
1 (2/3ng)3/2 ] 2ul/3
1 " (uw - u02)2 + v? + W2
F o= e - ‘ for v<0, (22)
2 (2/3nE2)3/2 ] 2E,/3
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and fl and f2 are zerc for V<0 and V>0, respectively.
The coordinate system for the Couette flow is given in Fig. 1. Note that
u, v, and w without the tensor indices are the #, v, and z components of the
instantanecus absolute velocity, respectively. Also, U, V, and W without the
tensor indices are the %, v, and z components of the relative velocity, respec~
tively.
There are Four unknown functions of y in the expression for £, which are

El’ E.» U and u_ .. Four particular moment equations are, therefore, generated

2 02

from Eg. (20) by substituting four different, suitable functions for ¢ in that
equation.

(7-9)

In the previous analyses, the vélues chogen for Q were 1, U, UV, and
UKUK, In the following analysis, the four values of 90 = 1, U, UZ, and VZ will
be employed, because the resulting moment equations with these values of { are

a little simpler than those resulting from the previous values of Q. By compaxr-
ing the limiting homologous solution of the preseﬁt meoment equations with the

(8)

homologous solution obtained earlier, it will be shown that these two sats
of Q give about the same results.

First, the substitutions of Eg. (21) and ¢ = 1 into Eq. (20) simply gives,

The successive substitution of ¢ = U, Uz, and V2 along with the substitution
of Eg. (21) for £ into Eg. (20) then give a set of three differential equations
after some manipulation. These equations are suitably nondimensionalized and

written as,
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ave 6m? a% .
av 2 av?
2 172 R as
pe 92 i.(ﬁ) Lz o (62 + Ve 5 4+ 49 clay 2
ay s \5 Ve 7 ay ( TTTTa N Y
. 2+......
av /_
2 2 2 2 2
20° + 3/2¢ _ 172 24 (s ¥ _ .
+ -§~:r§;-—-] (6m) £0 S\3 Y T = 0 {243
ay
2\ 1/2 d¢
1 fe2 . Y= 2+;-1<£) 0 “dY v?
2 o 4 av J Ly + y¥ (2 R “”’ 4
2.2
- ea? @ 3 = 0 (25)
ay
where,
u + 1u u 1 - 3
6 = ol 02 _ 5 O v = ol 02
u v ’ ; u*
Q% o=
68 = El/z/u* ’ a = u*fu ’ g = L .
® 2
o Re
u b v
Re = - . v o= & (26)
1/2

and u* is the friction velocity defined as {Tw/p) where T iz the surface

shear stress.

In deriving Egs. {(23) through (25), 8 and g” given by Egs. (3) and (7},

1/2 1/2

fed

respectively, have been simplified a little by replacing <UVUK> by ﬁU{U >
The only undefined parameter in Egs. (23} through (25) is Y* = y*/L where

v* is the minimum eddy scale explained in the sentences following Eg. (7). As



it was explained there, y* is of the order of the transition layer thickness.
It will, therefore, be determined in the next section during the discussion of
the natural scaling of the various flow regions.

Finally, the boundary conditions are given at the two solid boundariss as

follows:
At Y = O
6 = B2 = 0% = 0 (27)
AtY‘“-=2
b = 4
wz = 82 = 0 (28}

In the subsequent solution, however, Egs. (28) will be replaced by a more con-

venient set of boundary conditions at Y = 1.
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IV. BEHAVIOR OF THE GOVERNING MOMENT EQUATIONS

A study of Egs. (23) through (25) shows that there are two small parameters,
¢ and o, which govern the general behavior of these equations when Re is large.

It will be shown in this section that the scaling based on these two para~-
meters naturally divides the flow field into the three regions of outer, transi-
tion, and inner layers. The solution of Egs. (23) through (25) will then be ob-
tained in the next section by the method of matched asymptotic expansions for
the large Reynolds numbers.

We consider that the Reynolds number is sufficiently large such that there

exists the following order relationship,

£ << 3 << 1
Each of the three layers will be discussed in the following for 0 £ ¥ < 1.

Qgﬁer Layer

*

This laver is defined as that region wherein Y = 0(1).

- We expand the dependent variables as,

Y = {(Yy - (¥y + 2¢ ¥y + 0(82 a4 eaz)
¢(€r 05; ) - 4}00 Eq}lO &3 Ol 4 H
2 2 2 2.2 2 4 2
Ve, o, ¥} = WOO(Y) + swlo(Y) + wol(Y) + 0 o, co )’ (29}
2
8%, o, ¥) = 6% (1) + 62 (¥) + o20° (¥) + 0(e? oF ea?)

00 1o ol



& substitution of the above zeries inte Bgs. (23} through (25]

Firgt order,

dwoogsa
~EE82 o ¢ (30
day (30)
. . _
s 1/ , 5 2\ ]
” oo . 1 (ﬂ”) o '92 4 oo 5 4 aé .
¥ S SR ol S A A e 4 e
oo oo 4dY 2 56 . @ 4 4y o
2 4 22 262 & 3/20°
ay 2 . O o0 o
¢ + = 0 (31)
- oo 4 i
Ay j
(=]
2 . ﬂ¢oo 2
g v I
oo ay [o10] - 0 RN
"""‘Y»"' . d (f/ 4 b [ |
' ay

In view of the order relationships set forth by Egs. {29), the terms of
" 0{r} are consistently retained along with th@‘termé of 0(L).* Also, as we
shall see presently, ¥% = G(é} and, hence, it does not appear in Egs. {(30)
through (32}.
Eguations (30} thﬁbugh {327 show that, to t@a firet order, the effect of
the smaller eddies through viscosity on the observable properties is negligible
in this layer. This is evi@ent from the fact that the szecond order derivabive

,

terms are completely absent in these eguations.

Bs it was explained in the paragraphs following Eg. {7), that eguation is

constructed with the condition that the effect of the wall on the dissipation

is negligible at ¥ = 1, This means that the present

*Such is the case with the other two layers also.
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(8)

equations should describe at Y = 1 a homologous flow analyzed earlier. The

fact that the flow is homologous at the center of a Couette flow when Re is
{5)

large has been experimentally established by Robertson. 7

Equation (30) through (32) can be readily solved, and there result, at

Y =1,
A ;(ﬂef?im) o . 1 a(%@szm_.}
00 (3ﬂ)1/2 o 2 + d¢oo/dY lole! (Bw)l/z o 2 + a¢0$/dy

where (33)

L ; )1/2(a¢oo/dy : ) -
31 (6m) 2 2+ 4, /dy

The Reynolds stress and the turbulence energy can be constructed from woa

and @ as (see Ref, 8},
o0

<Uv:> &2

= TR
a 2 (6#)1/2 00 0O

{33)

T = o @oo*"z“) (36)
1

As it was explained following Egs. (22), the present govefning eguations,
Egs. (23) through (25), are obtained by taking the different moments of the
Fokker~Planck equation rather than the moments taken in reference 8. A compari-
son of Egs. (33) and (34) with the corresponding solutions of reference 8 shows
that the two sets of scolutions agree within 10%.

Figure 2 shows the Reynolds stress and turbulence energy computed by Bgs.

(8)

{(35) and (36), and those computed in the earlier work. It also contains the

(4} (5)

experimental results of Reichardt and Robertson obtained at the center of

Couette flow.
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Transition Layer

- This layer is defined as that region of Y = O(g) from the wall.

We first define the stretched independent variable as,

n = Y/¢ {37)

The dependent variables are expanded in the manner same as Eqgs. (29).

" " 2
ble, a,m) = b__(m) + ey (M) + 0()
2 o2 ~ 2 2
v (e, a, n} = woo(n) + ewlo(n) + O(a7) (38}
6%, o, n) = 8 °(n) + €8.°(n + 0(a)

fole’ 1o

24 substitution of the above series into Egs. (23) through (25) gives, to the

first order.

el a2y : 26
woo 00 (6ﬂ)l/2 d ¢oo ‘ e
dn 2 2 (39)
dn
" g .2 .1/2 -
ba oo, 1mN? (g2, = ;. a0} [Pl e
00 00 4n 2 (6 ) ® 4 ; ay g (2 + d¢f&¥}m o0
26 2 + éw 2
y =82 _20 | _ g (40)
(n + n%*) ,
s 2 A ~
600 d¢oo/dﬁ woi
- = 0 (43}

n + n* (2 + dcb/dY)m 4
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Firs@ we notice in the above equations that the second order derivative
term appears in the momentum equation, Eq. (39). This means that the contri-
bution of the small eddies through viscosity to the momentum transport is of
first order in this layer. However, the contributions to the energies, ﬁU2>
and <V2>, are still negligible.

The above points were first mentioned in the paragraphs following Eg. (7).
It was also expiained there that y* should be of the order of the transition-
layer thickness, that is ¥* = 0(e). The present solution is not too sensitive
to the particular choice of the value for ¥* provided that it is Oley. It is
likely that Y* < ¢ because the size of the eddies generated by a shear layver is
always smaller than the layer thickness.

We let, in the present study,
¥* = g/3.,(n* = 1/3) {42)

Inner Layer

This layer is defined as that region adjacent to the wall whose thickness
is of the order cu. Note that co is the rediprocal of u*L/v which is of the
order of the turbulence Reynolds number.

The stretched independent variable is defined as,

E = n/fo = Y/eq = ury (43)

Note that the inner variable, £, is the usual nondimensionalized ordinate with

which the various experimental results near the wall are correlated.
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The dependent variables are expanded as,

ble, @, &) = oo () + €3, (5) + 0] ¢ ae)

2 oy 2 2 2 2 2 .
Ve, a0 = v 2@ o+ e 2@+ ol € oo (44)
6°(e, u, ) = 028 + €0 2(®) + o0(f &f a’e)

Substituting the above series into Egs. (23) through (26), we obtain, to

first order,

2
d‘yoceoo (GW)l/z dvéol -
- - > > (45)
G ac
2 . 1/2 - ,
oo oo df 2 \G o 4 av j 1 2 + d@/dY}m o0
2 3,2 2 2
20 + =¥ 2 5] Y
+ oo . 2 oo:i“ (67()1/2 d . ( (;o, . ZO ): 0 (46)
n . ac ‘
L2172 2 ) - w 2 2.2
o e2 + Ef. 5 4 g@_\ eoo _ dq)ol/d‘v yoo _ d @00 = 0
2y 4 ay ) n* (2 + d¢/dy) 4 ﬁgz
(47}

We see in the above equations that all the second order derivatives are of
first order in this laver. The contributions, therefore, of the small eddies
through viscosity to all observable properties are important in this layer. In
fact, it is the viscosity which enables the flow field to finally satisfy the

wall boundary conditions given by Eqs. (27) and (28}.
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V. SOLUTION FOR HIGH REYNOLDS NUMBERS

The first order equations for the three layers developed in the preceding
section can be separately solved and asymptotically matched. However, Egs. {23}
through (25) show that the outer and transition layers can be analyzed together
with no added ﬁathematical difficulty. By héndling these layers togetheyr, one
can eliminate one matching thus improving the accuracy of the final results.

In this section, the first order equations for the outer-transition layer®
and the corresponding equations for the inner layer will pe formulated. The
solutions of these eguations will then be obtained.

Finally, these solutions will be ésymptotically matched thus constructing
a uniformly valid solution for the entire flow field.

Before we begin the analysis, however, the boundary conditions, Egs. (28},

will be replaced by a set of more convenient ones.

Boundary Conditions

The boundary conditions at Y = 0 are those given by Egs. (27}). Equations
(28) will be replaced by a set of the conditions .,at ¥ = 1 to be determined in
the following manner.

5)

As it was mentioned earlier, it has been experimentally established€ that

a homologous conditicn prevails at the center of a Couette flow when Re is suf-~

8)

ficiently large. The homologous solutions have been obtained previously{~ and
also in Section IV as Egs. (33) and (34). The boundary conditions at ¥ = 2 are,
therefore, replaced by the homologous conditions at ¥ = 1.

This means that we seek the solution of Egs. (23} through (25) which satis-

fies the boundary conditions at Y = O given by Egs. (27), and the particular

*Combined layer consisting of the outer and transition layers.
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compinations of ¥, 6_, and (d4/4Y)  which satisfy the homologous solution, Egs

4.

{33}, at ¥ = 1. In addition, the solution must satisfy the condition of ¢${1} =

[

Equations (27) and the conditions at ¥ = 1 specified above constitute seven
boundary contitions whereas Bgs. (23} through (25) comprise a sixth order system.
However, these eguations contain an unspecified parameter e. Therefore, for
a particular sét of the boundary conditions given at Y = 1, there exists & par-
ticular value of e for which Egs. {23) through (25) can be solved to satisf

4

seven boundary conditions. Since £ is a unique function of Re, each solution

corresponds to a particular Re.

Outer-Transition Laver

In order to combine the transition layer with the ocuter layer, the terms of

O} must be retained. Thus, we expand,

o

o 2 4
pla, ¥) = @O(Y> ooty (V) 4 0fe)

o ) .
oo n = o o+ Bl w0 (48)
" e
7
@, v = 8l + oFelw ¢ owh

As before, the terms of C{o} will be consistently retained for the first order

in view of the above expansions.

A substitution of Egs. (4B) into Egs. (23) through {25) gives, to first ordes
a8 12 a%
"o o = (673 - Q (49
ay 2 ’ 2 R



- 26
2. 1
A L./ 2 i
. dEo L gw v/ 2 ¢w
ve 2 4 ={L ofe” + 2
o o dy 2 NG \ . 4
Z 3 .27
26”7 + I
- AN A B
v+ {e/3) }
L2 2
g 2+ a¢ /3y 1h
© o .
Y + (/3 {2 + dd/8v) 4

where Eg. (42) has been emploved.

As it was explained in the precedin

must satisfy at ¥ = 1 the particular com

satisfy Hgs. (33), and the condition of
Note that the terms of 0(g)} appear

ransition layer. Outer layer does not
(32). Therefore, to be consistent with
required that Egs. (49) through {(51) sati

to 0f{g}.

s 2 2 .
The quantities y_ and Gm appearing

placed in terms of (4¢/dV) by the use of Egs. (333. Eguations (49) ©
5

(51). are then manipulated intc the following

P02,
ay i
. (a¢/8vy
r’ - -
202+ agsan)_ (v + e/ 12

o)

/2

2 & /Ay
X dr.;:) +od i C’/ - r 2
2+ Fr o Y
gy 12 4+ dé/dy} .
j5'e) =4
(50)
0 (513
g subsection, Egs. (49} through (51)
2 2 , e
binations of y_, 6, and (&¢/d¥Y)  which

$ = 2.
in BEgs. (49) through (51) because of the

contain them as seen in Egs. {20} through

the first order solution, it is only
isfy the boundary conditions at ¥ = 1
in Bgs. (49) through (51} are first re-
shrough
set of equations.
(52}
1/9
(de/ayy (2 + d¢/ay)
2T - ; =
2 3/2
2{Y + £/3}

(533



" 5 4 ad Ay 1/2 i
6° (em /2 | 2 T W (v + e/ % - g o (54)
o) 2 (2 + d¢/d¥)m e 2 dy
3 %?
9 A4 /AVS G
@2 = 4 C e, e (55}
o 7+ d¢o/dv Y + £/3 o
With the boundary condition that,
¢ (13 = 2 {56}

Above set is always satisfied to 0{g} for all (d@/dY)m, Hence, with Eg.
(56} satisfied by Eg. (52}, all boundary conditions at ¥ = 1 are now satisfied
by Egs. (52) thxough (56).

The pérameter e is determined through the subsequent matching with the
inner sclution.

The standard soclution, of course, exists for éhe cubic equation, Bg. (53).

Eqgquation {(52) is integrated numerically to satisfy Eg. (56).

Inner Layer

The stretched inner variable is that defined by Eq. (43).

To be consistent with the cuter~transition layer, the terms of 0(eg) will be
retained. Hence, the dependent varisbles are expanded as,

. , , 3

pla, £) = a@ofi} +  0{e7)

W2 e, E) = ¥ () + 0(ad) (57

6%(a, §) = 0°(2) + 0(a)
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Again, the terms of O(w) will be consistently retained for the first order
in view of Egs. (57). A substitution of the above series into Egs. (23) through
(25}, and the subseguent manipulation result, to first order, in the following

eguations.

dzqao 5 av_e_ ,
= O ‘ (58)
ac? em/2 4k :
a?y? ds 2¢ + @0 _/d
2 = 4 e ._j).?.. + ,1.;(%) [.f__.___ig../_i + 3] qyz (59)

az? (6m) /2 oo dg 4\aY/, | (2 + d¢/an) o {

2,2 2
a ¥

o i} 1 (%) [362 2 + d®/ag f_g] (60)
ac? (em /2 \dY [, {70 (2 +d¢/av)_ 4 |

In deriving the above equations, wi and Gi have been replaced in terms of
(d¢/dY) by the use of Egs. (33). Also, Eg. (42) has been employed.

Equations (58) through (60) must satisfy the wall boundary conditions of
Egs. (27) at £ = 0. The other set of the boundary conditions are determined

through the matching to be described below.

Matching

The outer-transition Iayer and the inner layer will now be matched to first
order. From the matching, the parameter ¢ and the remaining boundary conditions
for Egs. (58)>through (60) will be determined for a chosen (d¢/dY)m.

Beginning with Egs. (48), the one term inner expansions of the one term

{18)

outer expansions become, as Y =+ 0,
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d¢o
= et B £
¢¥) = ¢ (0) + {37 (ea) g,
o
2 2 2
o = i), %) = 60, (61)
o o
where it has been anticipated that ¢O(O) will wanish.

Next, using Egs. (57), the one term outer expansions of the one term inner

expansions become, as § » o,

$(Y) = o lim & (£),
goo ©

2 w2 2 a2, , .

o= v, 05 (0) = o). (62)

Matching the terms of Egs. (62) to those of Egs. (61), these result,

‘ as ag

= i -2 = --—wé
2 _ 2 _200 B 2, .
o) = (o), 0o(=) = 82(0). | (63)

The subscript w denotes Y = O.

. The first of Egs. ({63} is the additional boundary condition which the outer-
fransition layer equations—must satisfy in order to accomodate-the matching.
Therefore, for a given homologous boundary condition at Y = 1 represented by
(d$/dY) , there exists a particular value of e for which @O(O) = (0 can be satis-
fied. Once the first order outer solution is obtained, the matching first order
inner solution is obtained by numerically integrating Egs. (58) through (60) to

satisfy the wall boundary conditions and the remainder of Egs. (63).
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VI. DISCUSSION OF SOLUTICNS OBTAINED

Tﬁe structure of the Couette flow has been described and discussed in
Section IV in terms of certain singular behavior of the governing equations.
The solutions of the eguations obtained in the preceding section will be
discussed herein.

Figures 3 and 4 show the typical matching between the inner and the outer-
transition layers for the mean velocity U, turbulence energy <UKUK>, Revnolds
stress <UV>, and the stream~wise component of the turbulence enerqgy <U2>,

These values have been obtained from the first order solutions of ¢, mz, and 82

as,

u
o=<u>:_;tﬁjfu-g=iz
151 <u> u 2
0.0f) o8y OGD
< U > 2
£ K L U udas = o° + L
*2 *2 K K 4
1 k¥
<PV 3
Ug = ~—]~‘5~ jfnv&'é = 13/2 0 .
u* u* (6m) ™
2 . 2 2
LS N flat = & o : (64)
2 2 3 4
u u*

Figure 5 shows the typical mean velocity profiles computed in the present

(4
study. BAlso shown are the profiles experimentally obtained by Reicharﬁta"}

(5)

and
Robertson. The comparison between these experimental results and the present

theoretical values all at the Revnolds number of approximately 104 shows &

satisfactory agreement.
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There have been several empirical and phencmenological theories proposed

for the mean velocity profiles of Couette flow in the past. Many of these are

mentioned in Robertson’'s work.(5’6}

(19)

Also, one of the more recent ones is

that given by Lundgren. No attempt, however, is made here to compare the

present profile with those obtained by the phenomenclogical theories.

Figure 6 éhows the typical profiles of the turbulence energy, Reynolds
tress, and the x~component of the turbulence energy. Also, the more detailed
near-surface values of 402> are plotted on Fig. 7 since the experimental measure-

ment of <02> was taken by Rohertson.(6)

Bs it is expected from the singular behavior of the governing equations
discussed in Section IV, <UV> remains Qractically constant until the viscosity
effect becomes manifest in the transition layer. The influence of the viscosity
on <UKUK> becomes manifest'énly with the arrival of the inner layer as it was
evident in the discussion of Section IV.

The present theory is seen to correctly predict the order of magnitude

{6}

and the general behavior, with respect of ¥, of <U2> measured by Robertson.
<62> increases near the wall. This is evidently caused by the eddy stretching

in the » direction near the wall.

*

The coefficient of friction, Cf, computed in the present theory and those

{4) {5,8)

experimentally obtained by Reichardt and Robertson ‘are shown in Fig. B

as the Tunctions of the Réynolds number. ~ Alsco shown is the empirical curve

which Robertson found to be the best fit to his experimental peints and to the

(20}

experimental points obtained in the circular Couette flow. Since a secondary

flow can easily exist in a circular Couette Flow, the applicability of the cir-~
cular Couette flow results to the plane Couette flow studies is somewhat in

doubt.

Pigure 8 shows that the present theory gives the values of Cf which are be-

4y (5,6)

tween those experimentally obtained by Reichardt and Robertson for the

plane Couette flow.
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VII. CONCLUDING REMARKS

The simplified statistical theory developed by the present author earlier
has been made self-containing for the shear flows along sclid boundaries. This
has been accomplished in part by formulating the expression for the contribution

of the small eddies to the observable properties from the available stochastic

‘ {(16,17)y . . , . . - .
analyses of the Navier-Stokes eugation. During the course of this formu-
lation, the comparison of the present theory, developed from the generalized

Brownian motion,(7’8’9}

{16,17 , . .
(16,17) was made. The mutual consistency of the two theoriss was

with the stochastic theory based on the Navier-Stokes
equation,
shown .

The present theory naturally divides the flow region along a wall into the
three regions of the cuter, transition, and the inner layers. The contribution
of the small eddies to the observable properties through viscosity is negligible
in the outer laver whereas its contribution to the mean shear is of first order
in the transition layer. In the inner layer, all viscosity effects are of first
order.

The comparison of the Couette flow sglutiqné obtained with the available
experimental results showed that the present theory describes the rather detailed
structure of the flow field, such as <U2>, satisfactorily in addition to cor-
rectly predicting the mean velocity profile and the surface shear stress.

It has been shown that the present simplified statistical theory can be

employed to analyze the real wall shear flows tractably.
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